Step of Proof: fseg_transitivity
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
fseg
transitivity
:
1.
T
: Type
2.
l1
:
T
List
3.
l2
:
T
List
4.
l3
:
T
List
5.
L1
:
T
List
6.
l2
= (
L1
@
l1
)
7.
L
:
T
List
8.
l3
= (
L
@
l2
)
(
L
@
L1
@
l1
) = ((
L
@
L1
) @
l1
)
latex
by
InteriorProof
((RWO "append_assoc" 0)
CollapseTHEN (Auto
))
latex
C
.
Definitions
as
@
bs
,
P
Q
,
P
&
Q
,
x
:
A
B
(
x
)
,
type
List
,
x
:
A
.
B
(
x
)
,
s
=
t
,
P
Q
,
P
Q
,
x
:
A
B
(
x
)
Lemmas
iff
wf
,
rev
implies
wf
,
append
assoc
origin